Blood Perfusion in a Full-Thickness Eyelid Flap, Investigated by Laser Doppler Velocimetry, Laser Speckle Contrast Imaging, and Thermography

نویسندگان

  • Rafi Sheikh
  • Khashayar Memarzadeh
  • Christian Torbrand
  • Jonas Blohmé
  • Sandra Lindstedt
  • Malin Malmsjö
چکیده

Purpose: The eyelid is commonly dissected and divided in the process of, for example, blepharotomy, entropion repair, or when preparing a full-thickness eyelid flap to reconstruct a tumor defect. No study has yet been conducted to examine how perfusion in an eyelid is affected by dissection, using modern imaging techniques. Methods: The eyelid was divided with a 10-mm vertical incision, 5 mm from the medial canthus, and the incision was extended horizontally by 30 mm to provide a full-thickness eyelid. Blood perfusion was measured along the length of the free dissected eyelid using both laser Doppler velocimetry and laser speckle contrast imaging. Tissue temperature was visualized using a high-resolution infrared camera (thermography). Results: Measurements using laser speckle contrast imaging showed that blood flow decreased gradually from the pedicel base to the tip of the free dissected eyelid: 83% at 10 mm, stabilizing at 80% at 20 mm from the pedicel base. These results were supported by laser Doppler velocimetry, showing a reduction in perfusion to 67%, 15 mm from the pedicel base. Thermographic imaging showed a corresponding decrease in temperature from the tip to the pedicel base compared with nondissected eyelids. Conclusions: Dissection of an eyelid, to provide a full-thickness eyelid flap, results in only a slight decrease in blood flow. The results support the view that plastic surgery of the eyelids is permissive, and the rich vascularization of the eyelid due to the anastomotic network of vessels in the tarsal plate may increase the likelihood of flap survival and surgical success.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging.

Laser Doppler velocimetry uses the frequency shift produced by the Doppler effect to measure velocity. It can be used to monitor blood flow or other tissue movement in the body. Laser speckle is a random interference effect that gives a grainy appearance to objects illuminated by laser light. If the object consists of individual moving scatterers (such as blood cells), the speckle pattern fluct...

متن کامل

Monitoring of partial and full venous outflow obstruction in a porcine flap model using laser speckle contrast imaging.

BACKGROUND In microsurgery, there is a demand for more reliable methods of post-operative monitoring of free flaps, especially with regard to tissue-threatening obstructions of the feeding arteries and draining veins. In this study, we evaluated laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) to assess their possibilities to detect partial and full venous outflow obstruc...

متن کامل

High speed perfusion imaging based on laser speckle fluctuations

In this chapter an introduction will be given to the research areas of high-speed laser Doppler perfusion imaging and laser speckle contrast techniques. Furthermore, the aim of the performed research will be introduced, and finally an overview of the topics in this thesis will be given. 1.1 General Introduction Noninvasive imaging of blood flow in tissue is of major importance for certain appli...

متن کامل

Microvascular imaging: techniques and opportunities for clinical physiological measurements.

The microvasculature presents a particular challenge in physiological measurement because the vessel structure is spatially inhomogeneous and perfusion can exhibit high variability over time. This review describes, with a clinical focus, the wide variety of methods now available for imaging of the microvasculature and their key applications. Laser Doppler perfusion imaging and laser speckle con...

متن کامل

Non-Invasive Capillary Blood Flow Measurement: Laser Speckle and Laser Doppler

Microcirculation is essential for the proper supply of oxygen and nutritive substances to the biological tissue and the removal of waste products of metabolism. The determination of blood flow in the capillaries is therefore of great interest to clinicians. A comparison has been carried out using the developed non-invasive, non-contact and whole field laser speckle contrast imaging (LSCI) based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2018